Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 12, 2026
-
Free, publicly-accessible full text available February 12, 2026
-
Objectives: This study introduces MetaBIDx, a computational method designed to enhance species prediction in metagenomic environments. The method addresses the challenge of accurate species identification in complex microbiomes, which is due to the large number of generated reads and the ever-expanding number of bacterial genomes. Bacterial identification is essential for disease diagnosis and tracing outbreaks associated with microbial infections. Methods: MetaBIDx utilizes a modified Bloom filter for efficient indexing of reference genomes and incorporates a novel strategy for reducing false positives by clustering species based on their genomic coverages by identified reads. The approach was evaluated and compared with several well-established tools across various datasets. Precision, recall, and F1-score were used to quantify the accuracy of species prediction. Results: MetaBIDx demonstrated superior performance compared to other tools, especially in terms of precision and F1-score. The application of clustering based on approximate coverages significantly improved precision in species identification, effectively minimizing false positives. We further demonstrated that other methods can also benefit from our approach to removing false positives by clustering species based on approximate coverages. Conclusion: With a novel approach to reducing false positives and the effective use of a modified Bloom filter to index species, MetaBIDx represents an advancement in metagenomic analysis. The findings suggest that the proposed approach could also benefit other metagenomic tools, indicating its potential for broader application in the field. The study lays the groundwork for future improvements in computational efficiency and the expansion of microbial databases.more » « less
-
To address the increasing demand for AI literacy, we introduced a novel active learning approach that leverages both teaching assistants (TAs) and generative AI to provide feedback during in-class exercises. This method was evaluated through two studies in separate Computer Science courses, focusing on the roles and impacts of TAs in this learning environment, as well as their collaboration with ChatGPT in enhancing student feedback. The studies revealed that TAs were effective in accurately determining students’ progress and struggles, particularly in areas such as “backtracking”, where students faced significant challenges. This intervention’s success was evident from high student engagement and satisfaction levels, as reported in an end-of-semester survey. Further findings highlighted that while TAs provided detailed technical assessments and identified conceptual gaps effectively, ChatGPT excelled in presenting clarifying examples and offering motivational support. Despite some TAs’ resistance to fully embracing the feedback guidelines-specifically their reluctance to provide encouragement-the collaborative feedback process between TAs and ChatGPT improved the quality of feedback in several aspects, including technical accuracy and clarity in explaining conceptual issues. These results suggest that integrating human and artificial intelligence in educational settings can significantly enhance traditional teaching methods, creating a more dynamic and responsive learning environment. Future research will aim to improve both the quality and efficiency of feedback, capitalizing on unique strengths of both human and AI to further advance educational practices in the field of computing.more » « less
An official website of the United States government
